4. StorageAdvanced
Qdrant: Advanced Vector Search Features
November 19, 2025
13 min read
Ailog Research Team
Leverage Qdrant's powerful features: payload indexing, quantization, distributed deployment for high-performance RAG.
Why Qdrant?
- Open-source & self-hosted
- Advanced filtering
- Scalar quantization (4x smaller)
- Distributed clustering
- Built-in sparse vectors
Docker Setup
DEVELOPERbashdocker run -p 6333:6333 qdrant/qdrant
DEVELOPERpythonfrom qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams client = QdrantClient("localhost", port=6333) # Create collection client.create_collection( collection_name="documents", vectors_config=VectorParams( size=1536, distance=Distance.COSINE ) )
Payload Indexing
Index metadata for fast filtering:
DEVELOPERpython# Create index on "category" field client.create_payload_index( collection_name="documents", field_name="category", field_schema="keyword" ) # Create index on numeric "price" client.create_payload_index( collection_name="documents", field_name="price", field_schema="integer" ) # Now filtering is fast results = client.search( collection_name="documents", query_vector=embedding, query_filter=Filter( must=[ FieldCondition(key="category", match=MatchValue(value="tech")), FieldCondition(key="price", range=Range(lt=100)) ] ), limit=10 )
Quantization (4x Compression)
DEVELOPERpythonfrom qdrant_client.models import ScalarQuantization, ScalarType, QuantizationSearchParams # Enable quantization client.update_collection( collection_name="documents", quantization_config=ScalarQuantization( type=ScalarType.INT8, quantile=0.99, always_ram=True ) ) # Search with quantization results = client.search( collection_name="documents", query_vector=embedding, search_params=QuantizationSearchParams( ignore=False, # Use quantized vectors rescore=True # Rescore with full precision ), limit=10 )
Result: 1GB index → 256MB (4x smaller, 10% accuracy loss)
Distributed Deployment
DEVELOPERyaml# docker-compose.yml version: '3.8' services: qdrant-node1: image: qdrant/qdrant environment: - QDRANT__CLUSTER__ENABLED=true - QDRANT__CLUSTER__P2P__PORT=6335 ports: - "6333:6333" qdrant-node2: image: qdrant/qdrant environment: - QDRANT__CLUSTER__ENABLED=true - QDRANT__CLUSTER__P2P__PORT=6335 - QDRANT__CLUSTER__BOOTSTRAP__P2P__URI=qdrant-node1:6335
Sparse Vectors (Hybrid Search)
DEVELOPERpythonfrom qdrant_client.models import SparseVector, NamedVector # Upsert with both dense and sparse client.upsert( collection_name="hybrid", points=[{ "id": 1, "vector": { "dense": [0.1, 0.2, ...], # Dense embedding "sparse": SparseVector( indices=[10, 45, 123], values=[0.5, 0.3, 0.2] ) }, "payload": {"text": "..."} }] ) # Hybrid search results = client.query_points( collection_name="hybrid", prefetch=[ Prefetch(using="dense", query=[0.1, 0.2, ...], limit=100), Prefetch(using="sparse", query=SparseVector(...), limit=100) ], query=FusionQuery(fusion=Fusion.RRF), limit=10 )
Qdrant combines power, flexibility, and performance. Perfect for advanced RAG use cases.
Tags
qdrantvector databaseperformancefeatures
Related Guides
guidesintermediate
Vector Databases: Storing and Searching Embeddings
Comprehensive guide to vector databases for RAG: comparison of popular options, indexing strategies, and performance optimization.
14 min read
guidesadvanced
Milvus: Billion-Scale Vector Search
Deploy Milvus for production-scale RAG handling billions of vectors with horizontal scaling and GPU acceleration.
13 min read
guidesintermediate
Pinecone for Production RAG at Scale
Deploy production-ready vector search: Pinecone setup, indexing strategies, and scaling to billions of vectors.
12 min read