4. StorageIntermediate

Pinecone for Production RAG at Scale

November 18, 2025
12 min read
Ailog Research Team

Deploy production-ready vector search: Pinecone setup, indexing strategies, and scaling to billions of vectors.

Why Pinecone?

  • Fully managed (no ops)
  • Scales to billions of vectors
  • 50ms p95 latency
  • Built-in hybrid search
  • SOC 2 compliant

Setup (November 2025)

DEVELOPERpython
from pinecone import Pinecone pc = Pinecone(api_key="YOUR_API_KEY") # Create index pc.create_index( name="rag-production", dimension=1536, # OpenAI text-embedding-3-small metric="cosine", spec=ServerlessSpec( cloud="aws", region="us-east-1" ) ) index = pc.Index("rag-production")

Upserting Documents

DEVELOPERpython
from openai import OpenAI client = OpenAI() def upsert_documents(documents): vectors = [] for i, doc in enumerate(documents): # Generate embedding embedding = client.embeddings.create( model="text-embedding-3-small", input=doc['text'] ).data[0].embedding vectors.append({ "id": f"doc_{i}", "values": embedding, "metadata": { "text": doc['text'], "source": doc['source'], "date": doc['date'] } }) # Batch upsert (max 100 per batch) for i in range(0, len(vectors), 100): batch = vectors[i:i+100] index.upsert(vectors=batch)

Querying

DEVELOPERpython
def search(query, top_k=10): # Embed query query_embedding = client.embeddings.create( model="text-embedding-3-small", input=query ).data[0].embedding # Search results = index.query( vector=query_embedding, top_k=top_k, include_metadata=True ) return [match['metadata']['text'] for match in results['matches']]

Metadata Filtering

DEVELOPERpython
# Filter by source results = index.query( vector=query_embedding, filter={"source": {"$eq": "wikipedia"}}, top_k=10, include_metadata=True ) # Date range results = index.query( vector=query_embedding, filter={ "date": {"$gte": "2025-01-01", "$lte": "2025-12-31"} }, top_k=10 )

Namespaces (Multi-tenancy)

DEVELOPERpython
# Separate customer data index.upsert( vectors=[...], namespace="customer_123" ) # Query specific namespace results = index.query( vector=query_embedding, namespace="customer_123", top_k=10 )

Hybrid Search (Sparse + Dense)

DEVELOPERpython
# Upsert with sparse vectors index.upsert( vectors=[{ "id": "doc1", "values": dense_vector, # Dense embedding "sparse_values": { "indices": [10, 45, 123], # BM25 indices "values": [0.5, 0.3, 0.2] }, "metadata": {"text": "..."} }] ) # Hybrid query results = index.query( vector=dense_query, sparse_vector={ "indices": [10, 45], "values": [0.6, 0.4] }, top_k=10, alpha=0.7 # Dense weight )

Cost Optimization

Serverless pricing (Nov 2025):

  • $0.09 per million read units
  • $2.00 per million write units
  • $0.00025 per GB-hour storage

Tips:

  1. Use serverless for variable load
  2. Batch upserts (100 per request)
  3. Cache frequent queries
  4. Delete old data

Monitoring

DEVELOPERpython
# Index stats stats = index.describe_index_stats() print(f"Total vectors: {stats['total_vector_count']}") print(f"Dimension: {stats['dimension']}")

Pinecone is production-grade. Use it when you need scale, reliability, and zero ops.

Tags

pineconevector databaseproductionscale

Related Guides