4. StorageAdvanced

Milvus: Billion-Scale Vector Search

November 15, 2025
13 min read
Ailog Research Team

Deploy Milvus for production-scale RAG handling billions of vectors with horizontal scaling and GPU acceleration.

Why Milvus?

Built for scale:

  • Billions of vectors
  • GPU acceleration
  • Horizontal scaling
  • S3/MinIO storage
  • Kubernetes-native

Used by: Shopify, NVIDIA, Salesforce

Docker Setup

DEVELOPERbash
# Standalone (development) docker run -d --name milvus -p 19530:19530 -p 9091:9091 \ milvusdb/milvus:v2.3.4 milvus run standalone

Distributed Deployment

DEVELOPERyaml
# docker-compose.yml (production) version: '3.8' services: etcd: image: quay.io/coreos/etcd:v3.5.5 minio: image: minio/minio:RELEASE.2023-03-20T20-16-18Z milvus-proxy: image: milvusdb/milvus:v2.3.4 command: ["milvus", "run", "proxy"] depends_on: - etcd - minio milvus-querynode: image: milvusdb/milvus:v2.3.4 command: ["milvus", "run", "querynode"] deploy: replicas: 3 # Scale horizontally

Python Client

DEVELOPERpython
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType # Connect connections.connect("default", host="localhost", port="19530") # Define schema fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=1536), FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535), FieldSchema(name="metadata", dtype=DataType.JSON) ] schema = CollectionSchema(fields=fields, description="RAG documents") # Create collection collection = Collection(name="documents", schema=schema)

Indexing Strategies

DEVELOPERpython
# IVF_FLAT (balanced) index_params = { "index_type": "IVF_FLAT", "metric_type": "COSINE", "params": {"nlist": 1024} } # HNSW (faster search, more memory) index_params = { "index_type": "HNSW", "metric_type": "COSINE", "params": { "M": 16, "efConstruction": 256 } } # GPU index (10x faster) index_params = { "index_type": "GPU_IVF_FLAT", "metric_type": "COSINE", "params": {"nlist": 2048} } collection.create_index(field_name="embedding", index_params=index_params)

Inserting Data

DEVELOPERpython
# Batch insert data = [ [embedding1, embedding2, ...], # embeddings ["text1", "text2", ...], # text [{"category": "A"}, {"category": "B"}, ...] # metadata ] collection.insert(data) collection.flush() # Persist to disk

Searching

DEVELOPERpython
# Load collection into memory collection.load() # Search search_params = { "metric_type": "COSINE", "params": {"nprobe": 16} # Higher = more accurate but slower } results = collection.search( data=[query_embedding], anns_field="embedding", param=search_params, limit=10, output_fields=["text", "metadata"] ) for hits in results: for hit in hits: print(f"Score: {hit.score}, Text: {hit.entity.get('text')}")

Filtering

DEVELOPERpython
# Metadata filtering with boolean expressions results = collection.search( data=[query_embedding], anns_field="embedding", param=search_params, limit=10, expr='metadata["category"] == "tech"', output_fields=["text", "metadata"] )

Partitioning

Split collection for faster queries:

DEVELOPERpython
# Create partitions collection.create_partition("partition_2024") collection.create_partition("partition_2025") # Insert into specific partition collection.insert(data, partition_name="partition_2025") # Search in specific partition only results = collection.search( data=[query_embedding], anns_field="embedding", param=search_params, partition_names=["partition_2025"], limit=10 )

Time Travel

Query historical data:

DEVELOPERpython
import time # Get timestamp before deletion ts_before = int(time.time() * 1000) # Delete some data collection.delete(expr="id in [1, 2, 3]") # Query data as it was before deletion results = collection.search( data=[query_embedding], anns_field="embedding", param=search_params, limit=10, travel_timestamp=ts_before )

Resource Groups

Isolate workloads on different nodes:

DEVELOPERpython
from pymilvus import utility # Create resource groups utility.create_resource_group("rg1", config={"node_num": 2}) utility.create_resource_group("rg2", config={"node_num": 1}) # Assign collection to resource group collection.set_properties({"resource_groups": ["rg1"]})

Monitoring

DEVELOPERpython
# Collection stats stats = collection.get_stats() print(f"Row count: {stats['row_count']}") # Index progress index = collection.index() print(f"Index state: {index.state}") # Query metrics (Prometheus endpoint) # http://localhost:9091/metrics

Production RAG Pipeline

DEVELOPERpython
from pymilvus import Collection, connections import openai connections.connect("default", host="milvus-proxy", port="19530") collection = Collection("documents") collection.load() def milvus_rag(query): # Embed query query_emb = openai.Embedding.create( input=query, model="text-embedding-3-small" )['data'][0]['embedding'] # Search Milvus results = collection.search( data=[query_emb], anns_field="embedding", param={"metric_type": "COSINE", "params": {"nprobe": 32}}, limit=5, output_fields=["text"] ) # Build context context = "\n\n".join([hit.entity.get('text') for hit in results[0]]) # Generate answer response = openai.ChatCompletion.create( model="gpt-4-turbo", messages=[{ "role": "user", "content": f"Context: {context}\n\nQuestion: {query}" }] ) return response.choices[0].message.content # Usage answer = milvus_rag("What is Milvus?")

Milvus handles billion-vector scale with ease. Perfect for enterprise RAG deployments.

Tags

milvusvector databasescalestorageperformance

Related Guides