GPT-4.5 Turbo: OpenAI's New RAG-Optimized Model (Full Specs & Pricing)
GPT-4.5 Turbo specs: 128K context, 50% cheaper than GPT-4, native retrieval, structured output. Complete API guide and migration tips.
- Author
- Ailog Research Team
- Published
- Reading time
- 5 min read
GPT-4.5 Turbo at a Glance
| Spec | GPT-4.5 Turbo | GPT-4 Turbo | Difference | |------|---------------|-------------|------------| | Context Window | 128K tokens | 128K tokens | Same | | Input Price | $5.00/1M | $10.00/1M | -50% | | Output Price | $15.00/1M | $30.00/1M | -50% | | Median Latency | 1.2s | 1.7s | -30% | | Needle in Haystack (128K) | 87.2% | 74.1% | +13.1% | | Native Retrieval | Yes | No | New | | Structured Output | Yes | Limited | Enhanced |
Released: October 2025
---
Announcement
OpenAI has unveiled GPT-4.5 Turbo, an intermediate release between GPT-4 and GPT-5, with features specifically designed for retrieval-augmented generation workflows.
Key Features
Native Retrieval Mode
GPT-4.5 includes built-in retrieval without external vector databases:
``python response = openai.chat.completions.create( model="gpt-4.5-turbo", messages=[{"role": "user", "content": "What is our refund policy?"}], retrieval_sources=[ {"type": "file", "file_id": "file-abc123"}, {"type": "url", "url": "https://example.com/docs"} ], retrieval_mode="automatic" or "manual" for custom control ) `
How it works: • OpenAI indexes provided files/URLs • Retrieval happens during generation • No separate vector database needed
Limitations: • Max 50 files or URLs per request • Files must be < 50MB each • Updated files require re-indexing
Structured Output Mode
Generate JSON responses that conform to schemas:
`python response = openai.chat.completions.create( model="gpt-4.5-turbo", messages=[{"role": "user", "content": query}], response_format={ "type": "json_schema", "json_schema": { "name": "rag_response", "schema": { "type": "object", "properties": { "answer": {"type": "string"}, "sources": { "type": "array", "items": { "type": "object", "properties": { "title": {"type": "string"}, "page": {"type": "integer"}, "quote": {"type": "string"} } } }, "confidence": {"type": "number"} } } } } ) `
Benefits: • Guaranteed valid JSON • No parsing errors • Consistent citation format
Improved Context Utilization
Better at using long contexts: • 128K token window (unchanged) • 40% better "needle in haystack" performance • Maintains accuracy across full context length
Benchmark results:
| Context Length | GPT-4 Turbo | GPT-4.5 Turbo | |---------------|-------------|---------------| | 32K tokens | 94.2% | 96.1% | | 64K tokens | 89.7% | 94.3% | | 96K tokens | 82.3% | 91.8% | | 128K tokens | 74.1% | 87.2% |
Performance Improvements
Speed • 30% faster than GPT-4 Turbo • Median latency: 1.2s (down from 1.7s) • Supports up to 500 tokens/second streaming
Cost Reduction
Pricing optimized for RAG:
| Model | Input (per 1M tokens) | Output (per 1M tokens) | |-------|----------------------|------------------------| | GPT-4 Turbo | $10.00 | $30.00 | | GPT-4.5 Turbo | $5.00 | $15.00 | | GPT-3.5 Turbo | $0.50 | $1.50 |
50% cost reduction while maintaining GPT-4 level quality.
Quality
Tested on RAG-specific benchmarks:
| Benchmark | GPT-4 Turbo | GPT-4.5 Turbo | |-----------|-------------|---------------| | NaturalQuestions | 67.3% | 71.8% | | TriviaQA | 72.1% | 76.4% | | HotpotQA | 58.4% | 64.2% | | MS MARCO | 42.1% | 48.7% |
Consistent 5-7% improvement across datasets.
RAG-Specific Capabilities
Citation Generation
Automatic citation insertion:
`python response = openai.chat.completions.create( model="gpt-4.5-turbo", messages=[...], enable_citations=True New parameter )
Response includes inline citations print(response.choices[0].message.content) "The refund policy allows returns within 30 days[1] for a full refund[2]."
Citations provided separately for citation in response.citations: print(f"[{citation.id}] {citation.source}: {citation.quote}") `
Factuality Scoring
Self-assessment of answer confidence:
`python response = openai.chat.completions.create( model="gpt-4.5-turbo", messages=[...], include_confidence=True )
print(response.confidence_score) 0.0-1.0 0.9 = High confidence 0.5 = Uncertain 0.2 = Low confidence, likely hallucination `
Useful for filtering low-quality responses.
Multi-Turn Context Management
Better conversation handling: • Automatic summarization of old turns • Smart context truncation • Maintains coherence across long conversations
Migration Guide
From GPT-4 Turbo
Minimal changes required:
`python Before response = openai.chat.completions.create( model="gpt-4-turbo-preview", messages=messages )
After response = openai.chat.completions.create( model="gpt-4.5-turbo", Updated model messages=messages ) `
Enabling New Features
`python response = openai.chat.completions.create( model="gpt-4.5-turbo", messages=messages,
Optional: Built-in retrieval retrieval_sources=[...],
Optional: Structured output response_format={"type": "json_schema", ...},
Optional: Citations enable_citations=True,
Optional: Confidence scores include_confidence=True ) ``
Use Cases
Customer Support • Built-in retrieval over documentation • Structured responses for consistent formatting • Citation for answer verification
Research Assistants • Retrieval across multiple papers • Confidence scoring for fact-checking • Long context for comprehensive analysis
Enterprise Knowledge Management • Indexed internal documentation • Structured extraction of information • Cost-effective at scale
Limitations
Built-in Retrieval • Limited to 50 sources per request • No fine-grained control over chunking • Cannot update files without re-upload • Not suitable for very large document collections
Recommendation: Use traditional RAG (vector DB) for: • Large document collections (> 10K docs) • Frequently updated content • Custom chunking strategies • Advanced retrieval (hybrid search, reranking)
Structured Output • Adds ~10-15% latency • Max schema complexity: 10 nested levels • Cannot mix structured and unstructured outputs
Pricing Calculator
Example cost comparison:
Scenario: 10K queries/day, 2K input tokens, 500 output tokens each
| Model | Daily Cost | Monthly Cost | |-------|-----------|--------------| | GPT-4 Turbo | $400 | $12,000 | | GPT-4.5 Turbo | $200 | $6,000 | | GPT-3.5 Turbo | $20 | $600 |
GPT-4.5 Turbo offers GPT-4 quality at half the cost.
Availability • Generally available via OpenAI API • Rolling out to Azure OpenAI (November) • ChatGPT Plus/Team users (select GPT-4.5) • Enterprise customers (immediate access)
Best Practices Use built-in retrieval for small doc sets (< 100 files) Enable citations for transparency Check confidence scores for quality control Structured output for consistent parsing Monitor token usage to optimize costs
Conclusion
GPT-4.5 Turbo represents OpenAI's commitment to making RAG more accessible and cost-effective. While built-in retrieval won't replace vector databases for complex applications, it significantly lowers the barrier to entry for simpler RAG use cases.