Sovereign RAG: France Hosting and European Data
Deploy a sovereign RAG in France: local hosting, GDPR compliance, GAFAM alternatives and best practices for European data.
Sovereign RAG: France Hosting and European Data
For many French and European companies, data sovereignty is not an option but an obligation. This guide explains how to deploy a RAG system compliant with data localization requirements and European regulations.
Why Sovereignty Matters
Stakes for Businesses
| Issue | Risk without Sovereignty |
|---|---|
| Legal | GDPR non-compliance, US CLOUD Act |
| Security | Potential access by foreign governments |
| Business | Lost customer trust, exclusion from public tenders |
| Strategic | Technological dependency, lock-in |
Regulatory Framework
GDPR (since 2018):
- Transfers outside EU highly regulated
- Schrems II ruling invalidated Privacy Shield
- Standard Contractual Clauses required for transfers
AI Act (2024-2027):
- Transparency obligations
- AI system documentation
- Potential restrictions on non-European models
NIS2 (2024):
- Information systems security
- Applies to essential entities
- Localization requirements for certain sectors
Sovereign Architecture
100% European Infrastructure
┌─────────────────────────────────────────────────────────────┐
│ USERS │
│ (France / Europe) │
└───────────────────────┬─────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ FRANCE HOSTING │
│ ┌─────────────────────────────────────────────────────┐ │
│ │ Frontend │ │
│ │ (FR Servers - OVH/Scaleway) │ │
│ └──────────────────────┬──────────────────────────────┘ │
│ │ │
│ ┌──────────────────────▼──────────────────────────────┐ │
│ │ Backend API │ │
│ │ (FR Servers - OVH/Scaleway) │ │
│ └──────────────────────┬──────────────────────────────┘ │
│ │ │
│ ┌────────────────┼────────────────┐ │
│ ▼ ▼ ▼ │
│ ┌───────────┐ ┌───────────────┐ ┌───────────────────┐ │
│ │ PostgreSQL│ │ Qdrant Vector │ │ Object Storage │ │
│ │ (FR) │ │ DB (FR) │ │ (FR - S3) │ │
│ └───────────┘ └───────────────┘ └───────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ LLM PROVIDER │
│ Option 1: Self-hosted (Mistral, Llama on FR GPUs) │
│ Option 2: European API (Mistral API from Paris) │
│ Option 3: Regulated API (OpenAI with signed DPA) │
└─────────────────────────────────────────────────────────────┘
French Hosting Providers
| Provider | Certifications | Strengths | Weaknesses |
|---|---|---|---|
| OVH Cloud | HDS, SecNumCloud | Price, FR compliance | Less modern interface |
| Scaleway | ISO 27001 | UX, GPUs available | Fewer certifications |
| Outscale (3DS) | SecNumCloud | Very secure | Higher price |
| Clever Cloud | ISO 27001 | Simplified PaaS | Less control |
OVH Cloud Configuration
DEVELOPERpython# Configuration for OVH deployment import os # Managed database DATABASE_CONFIG = { "host": os.getenv("OVH_DB_HOST"), # xxx.db.ovh.net "port": 5432, "database": "rag_production", "user": os.getenv("OVH_DB_USER"), "password": os.getenv("OVH_DB_PASSWORD"), "sslmode": "require" # Mandatory encryption } # S3-compatible Object Storage S3_CONFIG = { "endpoint_url": "https://s3.gra.io.cloud.ovh.net", # Gravelines, FR "region_name": "gra", "aws_access_key_id": os.getenv("OVH_S3_ACCESS_KEY"), "aws_secret_access_key": os.getenv("OVH_S3_SECRET_KEY") } # Qdrant on private instance QDRANT_CONFIG = { "host": os.getenv("QDRANT_HOST"), # Private IP "port": 6333, "grpc_port": 6334, "api_key": os.getenv("QDRANT_API_KEY") }
Sovereign LLMs
European Models
Mistral AI (France):
- Mistral 7B, Mixtral 8x7B: open-source
- Mistral Large: API from Paris
- Native GDPR compliance
DEVELOPERpythonfrom mistralai.client import MistralClient client = MistralClient(api_key=os.getenv("MISTRAL_API_KEY")) async def generate_with_mistral(prompt: str, context: str) -> str: """ Generation with Mistral - servers in France """ messages = [ { "role": "system", "content": "You are a RAG assistant. Base your answers on the provided context." }, { "role": "user", "content": f"Context:\n{context}\n\nQuestion: {prompt}" } ] response = client.chat( model="mistral-large-latest", messages=messages, temperature=0.3, max_tokens=1000 ) return response.choices[0].message.content
European Alternatives:
- Aleph Alpha (Germany): Luminous
- LightOn (France): Paradigm
- Hugging Face (France): Hub and Inference API
Self-hosting on French GPUs
DEVELOPERpython# Mistral deployment on OVH/Scaleway GPU from transformers import AutoModelForCausalLM, AutoTokenizer import torch class LocalMistralLLM: def __init__(self, model_name: str = "mistralai/Mistral-7B-Instruct-v0.2"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) async def generate(self, prompt: str, max_tokens: int = 500) -> str: inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda") with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=max_tokens, temperature=0.3, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) # Scaleway GPU Configuration # GPU-3070-S instance: ~0.8 EUR/h # L4 instance: ~1.2 EUR/h (best value)
Sovereign Embeddings
DEVELOPERpythonfrom sentence_transformers import SentenceTransformer class SovereignEmbedder: def __init__(self): # Multilingual models performing well in French # Self-hosted, no external API call self.model = SentenceTransformer('intfloat/multilingual-e5-large') def embed(self, texts: list[str]) -> list[list[float]]: # Prefix for E5 prefixed = [f"passage: {t}" for t in texts] return self.model.encode(prefixed).tolist() def embed_query(self, query: str) -> list[float]: return self.model.encode(f"query: {query}").tolist()
Technical GDPR Compliance
End-to-End Encryption
DEVELOPERpythonfrom cryptography.fernet import Fernet from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC import base64 import os class GDPRCompliantStorage: def __init__(self, master_key: bytes): # Key derivation with random salt salt = os.urandom(16) kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=salt, iterations=480000, ) key = base64.urlsafe_b64encode(kdf.derive(master_key)) self.cipher = Fernet(key) def encrypt_pii(self, data: str) -> bytes: """Encrypt personal data""" return self.cipher.encrypt(data.encode()) def decrypt_pii(self, encrypted: bytes) -> str: """Decrypt personal data""" return self.cipher.decrypt(encrypted).decode() def pseudonymize(self, user_id: str) -> str: """Pseudonymize a user identifier""" import hashlib return hashlib.sha256(user_id.encode() + self.salt).hexdigest()[:16]
Compliant Logging
DEVELOPERpythonimport logging from datetime import datetime import json class GDPRLogger: def __init__(self, log_file: str): self.logger = logging.getLogger("gdpr_audit") handler = logging.FileHandler(log_file) handler.setFormatter(logging.Formatter('%(message)s')) self.logger.addHandler(handler) self.logger.setLevel(logging.INFO) def log_access( self, user_id: str, action: str, data_category: str, purpose: str, legal_basis: str ): """ Log personal data access """ entry = { "timestamp": datetime.now().isoformat(), "user_id_hash": self._hash_id(user_id), # Don't log ID in clear "action": action, "data_category": data_category, "purpose": purpose, "legal_basis": legal_basis, "retention_days": self._get_retention(data_category) } self.logger.info(json.dumps(entry)) def log_deletion(self, user_id: str, data_deleted: list): """ Log deletion (right to erasure) """ entry = { "timestamp": datetime.now().isoformat(), "action": "RIGHT_TO_ERASURE", "user_id_hash": self._hash_id(user_id), "data_categories_deleted": data_deleted, "confirmation": True } self.logger.info(json.dumps(entry))
Consent Management
DEVELOPERpythonfrom datetime import datetime, timedelta from enum import Enum class ConsentPurpose(Enum): RAG_INDEXING = "rag_indexing" CONVERSATION_HISTORY = "conversation_history" ANALYTICS = "analytics" PERSONALIZATION = "personalization" class ConsentManager: def __init__(self, db): self.db = db async def request_consent( self, user_id: str, purpose: ConsentPurpose, data_description: str ) -> dict: """ Prepare a consent request """ return { "consent_id": self._generate_id(), "purpose": purpose.value, "data_description": data_description, "legal_text": self._get_legal_text(purpose), "revocable": True, "valid_until": (datetime.now() + timedelta(days=365)).isoformat() } async def record_consent( self, user_id: str, consent_id: str, granted: bool, method: str # "explicit_click", "api", etc. ): """ Record user consent """ await self.db.insert("consents", { "user_id": user_id, "consent_id": consent_id, "granted": granted, "method": method, "timestamp": datetime.now(), "ip_address_hash": self._hash_ip(), "user_agent_hash": self._hash_ua() }) async def verify_consent( self, user_id: str, purpose: ConsentPurpose ) -> bool: """ Verify if user has given consent """ consent = await self.db.find_one("consents", { "user_id": user_id, "purpose": purpose.value, "granted": True, "revoked": False, "valid_until": {"$gte": datetime.now()} }) return consent is not None
Regulated Data Transfers
Using US APIs with Precautions
If using OpenAI or other US API is necessary:
DEVELOPERpythonclass SecureAPIWrapper: def __init__(self, api_key: str): self.client = OpenAI(api_key=api_key) async def generate_safe( self, prompt: str, context: str, pii_filter: bool = True ) -> str: """ API call with data protection """ # 1. Detect and mask PII if pii_filter: context = self._mask_pii(context) prompt = self._mask_pii(prompt) # 2. API call response = await self.client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "..."}, {"role": "user", "content": f"{context}\n\n{prompt}"} ] ) answer = response.choices[0].message.content return answer def _mask_pii(self, text: str) -> str: """ Mask personal data before sending """ import re # Emails text = re.sub( r'\b[\w.-]+@[\w.-]+\.\w+\b', '[EMAIL]', text ) # Phone numbers text = re.sub( r'\b(?:\+?\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}\b', '[PHONE]', text ) return text
Transfer Documentation
DEVELOPERpythonclass TransferRegistry: """ Registry of transfers outside EU (GDPR obligation) """ def __init__(self, db): self.db = db async def register_transfer( self, destination_country: str, recipient: str, data_categories: list, legal_basis: str, safeguards: list ): """ Register a transfer outside EU """ await self.db.insert("transfer_registry", { "timestamp": datetime.now(), "destination": destination_country, "recipient": recipient, "data_categories": data_categories, "legal_basis": legal_basis, # "SCC", "adequacy_decision", etc. "safeguards": safeguards, "documented_by": "system", "review_date": datetime.now() + timedelta(days=365) }) async def generate_report(self) -> dict: """ Generate report for DPO """ transfers = await self.db.find("transfer_registry") return { "report_date": datetime.now().isoformat(), "total_transfers": len(transfers), "by_country": self._group_by_country(transfers), "by_legal_basis": self._group_by_basis(transfers), "pending_reviews": self._get_pending_reviews(transfers) }
Sovereignty Checklist
Infrastructure
- French/European host with certifications (ISO 27001, HDS if healthcare)
- Data stored exclusively in France/EU
- Backups on European territory
- Encryption at rest and in transit (TLS 1.3)
- Restricted access with strong authentication
LLM and AI
- European model (Mistral) or self-hosted
- If US API: DPA signed, PII masked
- AI processing documentation
GDPR
- Records of processing up to date
- Consents tracked
- Rights exercise mechanisms
- Retention policy defined
- Audit logs preserved
Contractual
- DPA with all processors
- Standard Contractual Clauses if transfer outside EU
- Impact assessment (DPIA) if sensitive data
Learn More
- RAG Security and Compliance - Complete security guide
- GDPR and Chatbots - Chatbot compliance
- AI Act and RAG - AI Act implications
Turnkey Sovereign RAG with Ailog
Building a sovereign RAG infrastructure requires varied expertise. With Ailog, benefit from a 100% French solution:
- OVH Cloud hosting in Gravelines and Roubaix
- Data never transferred outside EU
- Mistral models for generation
- Self-hosted embeddings without external API calls
- Native GDPR compliance with DPA provided
- French support and French documentation
Try Ailog for free and deploy a sovereign RAG with peace of mind.
Tags
Related Posts
AI Chatbot for PrestaShop: RAG Integration Guide
Deploy an intelligent AI assistant on your PrestaShop store. Automate customer support, recommend products, and boost conversions with RAG technology.
AI Chatbot for Shopify: Complete RAG Integration Guide
Learn how to deploy an intelligent chatbot on your Shopify store using RAG technology. Automated customer support, product recommendations, and increased conversions.
AI Chatbot for WooCommerce: RAG Integration on WordPress
Complete guide to deploying an intelligent AI assistant on your WooCommerce store. Automate customer support and boost sales with RAG technology.