GuideAdvanced

RAG Agents: Orchestrating Multi-Agent Systems

March 5, 2026
20 min read
Ailog Team

Architect multi-agent RAG systems: orchestration, specialization, collaboration and failure handling for complex assistants.

RAG Agents: Orchestrating Multi-Agent Systems

A simple RAG agent follows a linear pipeline: retrieval, generation, response. A multi-agent system orchestrates several specialized agents that collaborate to handle complex tasks. This guide explores architectures and patterns for building these systems.

Why Multi-Agents?

Limitations of Monolithic RAG

A classic RAG struggles with certain tasks:

TaskSimple RAG Problem
Multi-source questionsSingle retrieval, limited context
Complex reasoningNo problem decomposition
Multiple actionsLinear pipeline, no loops
Fact verificationNo double-checking
Long tasksNo planning

The Multi-Agent Approach

Divide and conquer:

Complex question
       │
       ▼
┌─────────────────┐
│  ORCHESTRATOR   │ ← Decomposes and coordinates
└────────┬────────┘
         │
    ┌────┼────┬────────────┐
    ▼    ▼    ▼            ▼
┌──────┐┌──────┐┌──────┐┌──────┐
│Agent ││Agent ││Agent ││Agent │
│Search││Reason││Verify││Action│
└──────┘└──────┘└──────┘└──────┘
    │    │    │            │
    └────┴────┴────────────┘
                │
                ▼
         Final response

Orchestration Architectures

Pattern 1: Router

The orchestrator routes to the specialized agent.

DEVELOPERpython
from enum import Enum from typing import Callable, Dict class AgentType(Enum): FAQ = "faq" TECHNICAL = "technical" SALES = "sales" ESCALATION = "escalation" class RouterOrchestrator: def __init__(self, agents: Dict[AgentType, Callable], classifier): self.agents = agents self.classifier = classifier async def process(self, query: str, context: dict = None) -> dict: """ Route request to appropriate agent """ # 1. Classify request classification = await self.classifier.classify(query) agent_type = AgentType(classification["agent"]) # 2. Call agent agent = self.agents.get(agent_type) if not agent: agent = self.agents[AgentType.ESCALATION] result = await agent(query, context) return { "response": result["answer"], "agent_used": agent_type.value, "confidence": classification["confidence"], "sources": result.get("sources", []) } class IntentClassifier: def __init__(self, llm): self.llm = llm async def classify(self, query: str) -> dict: prompt = f""" Classify this user request. Categories: - faq: General questions, policies, information - technical: Technical issues, bugs, configurations - sales: Pricing, purchases, subscriptions - escalation: Complaints, emergencies, sensitive requests Request: {query} Respond in JSON: {{"agent": "...", "confidence": 0.0-1.0}} """ result = await self.llm.generate(prompt, temperature=0) return self._parse_json(result)

Pattern 2: Sequential Pipeline

Agents execute in sequence, each enriching the context.

DEVELOPERpython
from dataclasses import dataclass from typing import List @dataclass class AgentResult: agent_name: str output: dict success: bool error: str = None class SequentialPipeline: def __init__(self, agents: List[tuple]): """ agents: List of (name, agent_callable) """ self.agents = agents async def process(self, query: str, initial_context: dict = None) -> dict: """ Execute agents in sequence """ context = initial_context or {} context["original_query"] = query results = [] for agent_name, agent in self.agents: try: result = await agent(query, context) agent_result = AgentResult( agent_name=agent_name, output=result, success=True ) # Enrich context for next agent context[f"{agent_name}_result"] = result context["last_result"] = result except Exception as e: agent_result = AgentResult( agent_name=agent_name, output={}, success=False, error=str(e) ) results.append(agent_result) # Stop if agent fails (optional) if not agent_result.success and self.stop_on_failure: break return { "final_result": context.get("last_result"), "pipeline_results": results, "context": context } # Example pipeline pipeline = SequentialPipeline([ ("query_analyzer", QueryAnalyzerAgent()), ("retriever", RetrievalAgent()), ("fact_checker", FactCheckAgent()), ("generator", GenerationAgent()), ("citation_adder", CitationAgent()) ])

Pattern 3: Parallel with Fusion

Multiple agents work in parallel, then results are fused.

DEVELOPERpython
import asyncio from typing import List, Callable class ParallelOrchestrator: def __init__( self, agents: List[tuple], fusion_agent: Callable ): self.agents = agents # (name, agent, weight) self.fusion = fusion_agent async def process(self, query: str, context: dict = None) -> dict: """ Execute agents in parallel then fuse """ # Launch all agents in parallel tasks = [ self._run_agent(name, agent, query, context) for name, agent, _ in self.agents ] results = await asyncio.gather(*tasks, return_exceptions=True) # Collect valid results valid_results = [] for i, result in enumerate(results): name, _, weight = self.agents[i] if not isinstance(result, Exception): valid_results.append({ "agent": name, "result": result, "weight": weight }) # Fuse results fused = await self.fusion(query, valid_results) return { "response": fused["answer"], "contributing_agents": [r["agent"] for r in valid_results], "fusion_confidence": fused.get("confidence") } class FusionAgent: def __init__(self, llm): self.llm = llm async def __call__(self, query: str, results: List[dict]) -> dict: """ Fuse responses from multiple agents """ responses_text = "\n\n".join([ f"Agent {r['agent']} (weight {r['weight']}):\n{r['result'].get('answer', 'N/A')}" for r in results ]) prompt = f""" Synthesize these responses from different agents into a single coherent response. Original question: {query} Agent responses: {responses_text} Rules: 1. Prioritize agents with higher weight 2. In case of contradiction, indicate both viewpoints 3. Cite sources if available 4. Generate a single coherent response Synthesized response: """ answer = await self.llm.generate(prompt, temperature=0.3) return { "answer": answer, "confidence": self._calculate_confidence(results) }

Pattern 4: ReAct (Reasoning + Acting)

The agent reasons, acts, observes, and iterates.

DEVELOPERpython
from typing import Dict, Any class ReActAgent: def __init__(self, llm, tools: Dict[str, Callable], max_iterations: int = 5): self.llm = llm self.tools = tools self.max_iterations = max_iterations async def process(self, query: str) -> dict: """ Execute ReAct pattern: Thought -> Action -> Observation """ history = [] final_answer = None for i in range(self.max_iterations): # Generate next thought/action step = await self._generate_step(query, history) if step["type"] == "thought": history.append({"thought": step["content"]}) elif step["type"] == "action": # Execute action tool_name = step["tool"] tool_input = step["input"] if tool_name in self.tools: observation = await self.tools[tool_name](tool_input) else: observation = f"Tool '{tool_name}' not available" history.append({ "action": f"{tool_name}({tool_input})", "observation": observation }) elif step["type"] == "answer": final_answer = step["content"] break return { "answer": final_answer, "reasoning_trace": history, "iterations": i + 1 } # Tools for ReAct agent tools = { "search_kb": lambda q: rag_search(q), "calculate": lambda expr: eval(expr), "get_current_date": lambda _: datetime.now().isoformat(), "check_inventory": lambda product_id: inventory_api.check(product_id) }

Specialized Agents

Search Agent

DEVELOPERpython
class SearchAgent: def __init__(self, retrievers: Dict[str, Retriever], llm): self.retrievers = retrievers self.llm = llm async def __call__(self, query: str, context: dict) -> dict: """ Agent specialized in multi-source search """ # 1. Determine relevant sources sources = await self._select_sources(query) # 2. Search each source all_results = [] for source_name in sources: retriever = self.retrievers.get(source_name) if retriever: results = await retriever.search(query) for r in results: r["source"] = source_name all_results.extend(results) # 3. Re-rank results ranked = await self._rerank(query, all_results) return { "documents": ranked[:10], "sources_used": sources, "total_found": len(all_results) }

Verification Agent

DEVELOPERpython
class VerificationAgent: def __init__(self, llm, fact_db): self.llm = llm self.fact_db = fact_db async def __call__(self, query: str, context: dict) -> dict: """ Verify claims against reliable sources """ # Get response to verify answer = context.get("last_result", {}).get("answer", "") # 1. Extract claims claims = await self._extract_claims(answer) # 2. Verify each claim verifications = [] for claim in claims: verification = await self._verify_claim(claim) verifications.append(verification) # 3. Determine overall score verified_count = sum(1 for v in verifications if v["verified"]) total = len(verifications) return { "claims": verifications, "verification_score": verified_count / total if total > 0 else 1.0, "needs_correction": any(not v["verified"] for v in verifications) }

Action Agent

DEVELOPERpython
class ActionAgent: def __init__(self, action_registry: Dict[str, Callable], llm): self.actions = action_registry self.llm = llm async def __call__(self, query: str, context: dict) -> dict: """ Execute actions based on request """ # 1. Determine required actions action_plan = await self._plan_actions(query, context) # 2. Execute actions results = [] for action in action_plan: if action["name"] in self.actions: try: result = await self.actions[action["name"]](**action["params"]) results.append({ "action": action["name"], "success": True, "result": result }) except Exception as e: results.append({ "action": action["name"], "success": False, "error": str(e) }) return { "actions_executed": results, "all_successful": all(r["success"] for r in results) } # Action registry action_registry = { "create_ticket": create_support_ticket, "send_email": send_email, "update_order": update_order_status, "schedule_callback": schedule_callback, "apply_discount": apply_discount_code }

Failure Handling

Retry with Backoff

DEVELOPERpython
import asyncio from functools import wraps def with_retry(max_attempts: int = 3, backoff: float = 1.0): def decorator(func): @wraps(func) async def wrapper(*args, **kwargs): last_exception = None for attempt in range(max_attempts): try: return await func(*args, **kwargs) except Exception as e: last_exception = e if attempt < max_attempts - 1: wait_time = backoff * (2 ** attempt) await asyncio.sleep(wait_time) raise last_exception return wrapper return decorator

Graceful Fallback

DEVELOPERpython
class ResilientOrchestrator: def __init__(self, primary_agents, fallback_agent): self.primary = primary_agents self.fallback = fallback_agent async def process(self, query: str, context: dict = None) -> dict: """ Execute with fallback on failure """ try: # Try primary pipeline result = await self._run_primary(query, context) if self._is_valid_result(result): return result except Exception as e: logger.warning(f"Primary pipeline failed: {e}") # Fallback to simple agent return await self.fallback(query, context)

Monitoring and Observability

DEVELOPERpython
import time from dataclasses import dataclass @dataclass class AgentTrace: agent_name: str start_time: float end_time: float input_query: str output: dict success: bool error: str = None class TracingOrchestrator: def __init__(self, orchestrator, trace_store): self.orchestrator = orchestrator self.traces = trace_store async def process(self, query: str, context: dict = None) -> dict: """ Execute with full tracing """ trace_id = str(uuid.uuid4()) traces = [] # Wrapper to capture traces original_agents = self.orchestrator.agents.copy() for name, agent in original_agents.items(): self.orchestrator.agents[name] = self._wrap_agent(name, agent, traces) try: result = await self.orchestrator.process(query, context) # Save traces await self.traces.save(trace_id, traces) result["trace_id"] = trace_id result["execution_time_ms"] = sum( (t.end_time - t.start_time) * 1000 for t in traces ) return result finally: # Restore original agents self.orchestrator.agents = original_agents

Best Practices

1. Atomic Agents

Each agent should have a single, clear responsibility.

2. Timeouts Everywhere

Define timeouts to avoid blocking.

3. Structured Logging

Log each step for debugging.

4. Unit Tests per Agent

Test each agent independently before integration.

5. Circuit Breaker

Temporarily disable failing agents.

Learn More


Multi-Agent Orchestration with Ailog

Building a robust multi-agent architecture requires deep expertise. With Ailog, benefit from pre-built agent infrastructure:

  • Specialized agents: search, verification, action
  • Configurable orchestration without code
  • Integrated monitoring with complete traces
  • Automatic fallbacks and error handling
  • Scalability for heavy loads

Try Ailog for free and deploy multi-agent assistants in a few clicks.

Tags

RAGagentsorchestrationmulti-agentLLMarchitecture

Related Posts

Ailog Assistant

Ici pour vous aider

Salut ! Pose-moi des questions sur Ailog et comment intégrer votre RAG dans vos projets !