Agentic RAG: Building AI Agents with Dynamic Knowledge Retrieval
Comprehensive guide to Agentic RAG: architecture, design patterns, implementing autonomous agents with knowledge retrieval, multi-tool orchestration, and advanced use cases.
TL;DR
- Agentic RAG combines the power of autonomous AI agents with RAG knowledge retrieval
- Agents can dynamically decide when and what to retrieve, unlike traditional RAG
- Modular architecture: planner, retriever, reasoner, executor
- Key patterns: ReAct, Plan-and-Execute, Self-RAG, Corrective RAG
- Use cases: research assistants, complex automation, multi-document analysis
- Try it now: Build your RAG agent on Ailog
Introduction: Beyond Traditional RAG
Traditional RAG (Retrieval-Augmented Generation) follows a linear pipeline: query → retrieval → generation. This approach works well for simple questions but reaches its limits when facing complex tasks that require:
- Multiple reasoning steps
- Combining information from multiple sources
- Dynamic decisions about what to search
- Validation and correction of retrieved information
Agentic RAG addresses these challenges by giving the AI the ability to plan, execute, and iterate autonomously. The agent becomes an intelligent orchestrator that decides when to retrieve, what to search for, and how to combine information to accomplish complex tasks.
What is Agentic RAG?
Definition
Agentic RAG is an architecture where an autonomous AI agent uses knowledge retrieval as one of its tools, among others, to accomplish tasks. Unlike traditional RAG where retrieval is systematic, the agent dynamically decides:
- If retrieval is necessary
- What to search for (optimal query formulation)
- Where to search (source selection)
- When to stop (sufficiency criteria)
- How to combine results (multi-source synthesis)
Traditional RAG vs Agentic RAG
| Aspect | Traditional RAG | Agentic RAG |
|---|---|---|
| Flow | Linear (query → retrieval → generation) | Iterative and adaptive |
| Retrieval decision | Always (systematic) | Conditional (when necessary) |
| Query formulation | Direct user query | Agent-optimized queries |
| Sources | Fixed (one knowledge base) | Multiple and dynamic |
| Validation | None | Self-verification and correction |
| Reasoning | Single-hop | Multi-hop with chaining |
| Complexity | Low | High |
| Use cases | Simple factual questions | Complex tasks and research |
Why Agentic RAG?
Limitations of traditional RAG:
-
Complex questions: "Compare the pricing strategies of our 3 main competitors and recommend a position" requires multiple searches and synthesis.
-
Incomplete information: If the first retrieval isn't enough, traditional RAG can't search further.
-
Ambiguous queries: The agent can clarify or reformulate before searching.
-
Undetected hallucinations: The agent can verify its own responses against sources.
-
Multi-step tasks: Booking a trip requires searching flights, hotels, then combining and validating.
Agentic RAG Architecture
Overview
┌─────────────────────────────────────────────────────────────────┐
│ AGENT CONTROLLER │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ │
│ │ Planner │ │ Reasoner │ │ Memory Manager │ │
│ └──────┬───────┘ └──────┬───────┘ └──────────┬───────────┘ │
│ │ │ │ │
│ └────────────┬────┴──────────────────────┘ │
│ │ │
│ ┌───────▼───────┐ │
│ │ Executor │ │
│ └───────┬───────┘ │
└──────────────────────┼──────────────────────────────────────────┘
│
┌──────────────┼──────────────┐
│ │ │
┌────▼────┐ ┌────▼────┐ ┌────▼────┐
│ Tool │ │ Tool │ │ Tool │
│Retrieval│ │ Compute │ │ API │
└─────────┘ └─────────┘ └─────────┘
Key Components
1. Planner
The planner decomposes complex tasks into manageable subtasks. It maintains an execution plan that can be dynamically revised.
DEVELOPERpythonclass Planner: def __init__(self, llm): self.llm = llm def create_plan(self, task: str, context: dict) -> List[Step]: """Decompose a task into executable steps.""" prompt = f""" Task: {task} Available context: {context} Decompose this task into clear, ordered steps. For each step, indicate: - The action to perform - Required tools - Dependencies on other steps """ plan = self.llm.generate(prompt) return self.parse_plan(plan) def revise_plan(self, plan: List[Step], feedback: str) -> List[Step]: """Revise the plan based on intermediate results.""" # Adapt plan if information is missing or changes pass
2. Reasoner
The reasoner analyzes retrieved information, identifies gaps, and decides on next actions.
DEVELOPERpythonclass Reasoner: def __init__(self, llm): self.llm = llm def analyze_retrieval(self, query: str, documents: List[Document]) -> Analysis: """Analyze if retrieved documents are sufficient.""" prompt = f""" Question: {query} Retrieved documents: {documents} Analysis: 1. Do the documents answer the question? 2. Is there missing information? 3. Are there contradictions? 4. What confidence do you have in the information? Decision: [SUFFICIENT | NEED_MORE | REFORMULATE | ESCALATE] """ return self.llm.generate(prompt) def synthesize(self, query: str, all_results: List[RetrievalResult]) -> str: """Synthesize information from multiple retrievals.""" pass
3. Memory Manager
Maintains conversational context and intermediate results.
DEVELOPERpythonclass MemoryManager: def __init__(self): self.short_term = [] # Current conversation self.working_memory = {} # Intermediate results self.episodic = [] # Action history def add_to_working_memory(self, key: str, value: any): """Store an intermediate result.""" self.working_memory[key] = { "value": value, "timestamp": datetime.now(), "source": "retrieval" # or "computation", "user" } def get_relevant_context(self, query: str) -> dict: """Retrieve relevant context for a query.""" # Combine short-term memory and intermediate results pass
4. Executor
Orchestrates tool execution according to the plan.
DEVELOPERpythonclass Executor: def __init__(self, tools: Dict[str, Tool]): self.tools = tools async def execute_step(self, step: Step) -> StepResult: """Execute a plan step.""" tool = self.tools[step.tool_name] result = await tool.execute(step.parameters) return StepResult( step=step, result=result, success=result.is_valid(), metadata={"latency": result.latency} ) async def execute_plan(self, plan: List[Step]) -> ExecutionResult: """Execute a complete plan with error handling.""" results = [] for step in plan: result = await self.execute_step(step) results.append(result) if not result.success and step.is_critical: # Trigger plan revision break return ExecutionResult(results=results)
Agentic RAG Patterns
1. ReAct Pattern (Reasoning + Acting)
ReAct alternates between reflection and action. The agent thinks aloud before each action.
Thought: I need to find the Q3 2024 revenue for company X.
Action: search_documents("Q3 2024 revenue company X")
Observation: Document found: Q3 2024 Financial Report, revenue = €45M
Thought: I have the revenue, now I need to compare it to Q3 2023.
Action: search_documents("Q3 2023 revenue company X")
Observation: Document found: Q3 2023 Financial Report, revenue = €38M
Thought: I can now calculate the growth.
Action: calculate((45-38)/38 * 100)
Observation: Result: 18.4%
Thought: I have all the information to answer.
Final Answer: Company X achieved €45M in revenue in Q3 2024, representing 18.4% growth compared to Q3 2023 (€38M).
Implementation:
DEVELOPERpythonclass ReActAgent: def __init__(self, llm, tools): self.llm = llm self.tools = tools self.max_iterations = 10 def run(self, query: str) -> str: history = [] for i in range(self.max_iterations): # Generate next thought and action prompt = self.build_prompt(query, history) response = self.llm.generate(prompt) thought, action = self.parse_response(response) history.append({"thought": thought, "action": action}) # Check if it's a final answer if action.type == "final_answer": return action.content # Execute the action observation = self.execute_action(action) history.append({"observation": observation}) return "Unable to find a satisfactory answer."
2. Plan-and-Execute Pattern
Separates planning from execution for complex tasks.
DEVELOPERpythonclass PlanAndExecuteAgent: def __init__(self, planner, executor, replanner): self.planner = planner self.executor = executor self.replanner = replanner async def run(self, task: str) -> str: # Phase 1: Initial planning plan = self.planner.create_plan(task) results = [] for step in plan: # Phase 2: Execution result = await self.executor.execute_step(step) results.append(result) # Phase 3: Replanning if necessary if result.requires_replan: remaining_steps = plan[plan.index(step)+1:] plan = self.replanner.revise( original_task=task, completed=results, remaining=remaining_steps, feedback=result.feedback ) return self.synthesize_results(results)
3. Self-RAG Pattern
The agent evaluates and critiques its own retrievals and generations.
DEVELOPERpythonclass SelfRAGAgent: def __init__(self, llm, retriever): self.llm = llm self.retriever = retriever def run(self, query: str) -> str: # Step 1: Decide if retrieval is necessary need_retrieval = self.assess_retrieval_need(query) if need_retrieval: # Step 2: Retrieve documents = self.retriever.search(query) # Step 3: Critique relevance relevant_docs = self.critique_relevance(query, documents) if not relevant_docs: # Reformulate and retry new_query = self.reformulate_query(query) documents = self.retriever.search(new_query) relevant_docs = self.critique_relevance(query, documents) # Step 4: Generate response response = self.generate_response(query, relevant_docs) # Step 5: Critique response is_supported = self.critique_support(response, relevant_docs) is_useful = self.critique_usefulness(response, query) if not is_supported or not is_useful: # Regenerate with feedback response = self.regenerate_with_feedback( query, relevant_docs, support_feedback=is_supported, usefulness_feedback=is_useful ) return response
4. Corrective RAG Pattern (CRAG)
Evaluates the quality of retrieved documents and takes corrective actions.
DEVELOPERpythonclass CorrectiveRAGAgent: def __init__(self, llm, retriever, web_search): self.llm = llm self.retriever = retriever self.web_search = web_search def run(self, query: str) -> str: # Initial retrieval documents = self.retriever.search(query) # Quality evaluation relevance_scores = self.evaluate_relevance(query, documents) # Document classification correct_docs = [d for d, s in zip(documents, relevance_scores) if s > 0.7] ambiguous_docs = [d for d, s in zip(documents, relevance_scores) if 0.3 < s <= 0.7] incorrect_docs = [d for d, s in zip(documents, relevance_scores) if s <= 0.3] # Corrective actions based on case if len(correct_docs) >= 2: # Case: Sufficient documents final_docs = correct_docs elif len(correct_docs) + len(ambiguous_docs) >= 2: # Case: Need to refine ambiguous ones refined = self.refine_ambiguous(query, ambiguous_docs) final_docs = correct_docs + refined else: # Case: Need external search web_results = self.web_search.search(query) final_docs = correct_docs + self.process_web_results(web_results) # Generation with corrected documents return self.generate_response(query, final_docs)
Practical Implementation
Setting Up a RAG Agent with LangChain
DEVELOPERpythonfrom langchain.agents import AgentExecutor, create_openai_tools_agent from langchain.tools import Tool from langchain_openai import ChatOpenAI from langchain.prompts import ChatPromptTemplate # Define tools def search_knowledge_base(query: str) -> str: """Search in the internal knowledge base.""" # Vector search implementation results = vector_store.similarity_search(query, k=5) return "\n".join([doc.page_content for doc in results]) def search_web(query: str) -> str: """Search the web for recent information.""" # Web search implementation pass def calculate(expression: str) -> str: """Perform a mathematical calculation.""" return str(eval(expression)) tools = [ Tool( name="knowledge_search", func=search_knowledge_base, description="Search internal documentation and knowledge bases. Use for company-specific information." ), Tool( name="web_search", func=search_web, description="Search the web. Use for recent or public information." ), Tool( name="calculator", func=calculate, description="Perform mathematical calculations. Input: valid mathematical expression." ) ] # Create prompt prompt = ChatPromptTemplate.from_messages([ ("system", """You are an expert research assistant. You use your tools judiciously to answer questions. Rules: 1. Always start by thinking about what you need 2. Use knowledge_search for internal information 3. Use web_search for recent or external information 4. Verify your information before concluding 5. Cite your sources in your final answer"""), ("human", "{input}"), ("placeholder", "{agent_scratchpad}") ]) # Create agent llm = ChatOpenAI(model="gpt-4-turbo-preview", temperature=0) agent = create_openai_tools_agent(llm, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) # Execute response = agent_executor.invoke({ "input": "Compare our Q3 2024 sales with the market average" })
Multi-Source Management with Routing
DEVELOPERpythonclass MultiSourceRouter: """Routes queries to appropriate sources.""" def __init__(self, sources: Dict[str, VectorStore], llm): self.sources = sources self.llm = llm def route(self, query: str) -> List[str]: """Determine which sources to query.""" prompt = f""" Query: {query} Available sources: - technical_docs: Technical docs, APIs, architecture - customer_base: Customer information, contracts, history - finance: Financial reports, budgets, forecasts - hr: HR policies, org chart, procedures - products: Product catalog, pricing, specs Which sources are relevant for this query? Respond with a JSON list: ["source1", "source2"] """ response = self.llm.generate(prompt) return json.loads(response) async def search_all(self, query: str) -> Dict[str, List[Document]]: """Parallel search across all relevant sources.""" relevant_sources = self.route(query) tasks = [ self.search_source(source, query) for source in relevant_sources ] results = await asyncio.gather(*tasks) return dict(zip(relevant_sources, results))
Validation and Self-Correction
DEVELOPERpythonclass ResponseValidator: """Validates and corrects generated responses.""" def __init__(self, llm): self.llm = llm def validate(self, query: str, response: str, sources: List[Document]) -> ValidationResult: prompt = f""" Question: {query} Generated response: {response} Sources used: {[doc.page_content for doc in sources]} Evaluate this response: 1. FACTUALITY: Is each claim supported by sources? (yes/no/partial) 2. COMPLETENESS: Does the response cover all aspects of the question? (yes/no) 3. COHERENCE: Is the response logically coherent? (yes/no) 4. HALLUCINATIONS: Is there information not present in sources? (list) JSON format: {{ "factuality": "yes|no|partial", "completeness": "yes|no", "coherence": "yes|no", "hallucinations": ["...", "..."], "confidence": 0.0-1.0, "corrections_needed": ["...", "..."] }} """ result = self.llm.generate(prompt) return ValidationResult.from_json(result) def correct(self, query: str, response: str, validation: ValidationResult, sources: List[Document]) -> str: """Correct response based on validation.""" if validation.confidence > 0.9: return response prompt = f""" Original response: {response} Identified issues: {validation.corrections_needed} Hallucinations: {validation.hallucinations} Correct sources: {[doc.page_content for doc in sources]} Generate a corrected response that: 1. Eliminates hallucinations 2. Relies only on sources 3. Remains complete and useful """ return self.llm.generate(prompt)
Advanced Use Cases
1. Multi-Document Research Assistant
Analyzes and synthesizes information from numerous documents.
DEVELOPERpythonclass ResearchAssistant: """Research assistant capable of analyzing multiple documents.""" async def research(self, topic: str, depth: str = "comprehensive") -> ResearchReport: # Phase 1: Initial exploration initial_results = await self.broad_search(topic) # Phase 2: Subtopic identification subtopics = self.identify_subtopics(topic, initial_results) # Phase 3: Deep search per subtopic detailed_results = {} for subtopic in subtopics: results = await self.deep_search(subtopic) detailed_results[subtopic] = results # Phase 4: Contradiction identification contradictions = self.find_contradictions(detailed_results) # Phase 5: Synthesis report = self.synthesize_report( topic=topic, subtopics=subtopics, results=detailed_results, contradictions=contradictions ) return report
2. Due Diligence Agent
Automates in-depth analysis for business decisions.
DEVELOPERpythonclass DueDiligenceAgent: """Agent for automated due diligence analysis.""" def analyze_company(self, company_name: str) -> DueDiligenceReport: sections = [ ("financial", self.analyze_financials), ("legal", self.analyze_legal), ("market", self.analyze_market_position), ("team", self.analyze_leadership), ("tech", self.analyze_technology), ("risks", self.identify_risks) ] results = {} for section_name, analyzer in sections: results[section_name] = analyzer(company_name) # Synthesis and scoring return self.compile_report(company_name, results)
3. Intelligent Customer Support Agent
Solves complex problems by consulting multiple sources.
DEVELOPERpythonclass SupportAgent: """Customer support agent with multi-step resolution.""" async def handle_ticket(self, ticket: SupportTicket) -> Resolution: # Understand the problem problem_analysis = self.analyze_problem(ticket) # Search for solutions kb_results = await self.search_knowledge_base(problem_analysis.keywords) past_tickets = await self.search_similar_tickets(problem_analysis) # Evaluate potential solutions solutions = self.evaluate_solutions(kb_results, past_tickets) if solutions.best.confidence > 0.8: return self.generate_resolution(solutions.best) else: # Escalate with enriched context return self.escalate_with_context(ticket, problem_analysis, solutions)
Optimization and Best Practices
1. Token and Cost Management
DEVELOPERpythonclass TokenOptimizer: """Optimizes token usage in agents.""" def __init__(self, max_tokens_per_step: int = 2000): self.max_tokens = max_tokens_per_step def compress_context(self, documents: List[Document], query: str) -> str: """Compress context to respect limits.""" # Sort by relevance scored = [(doc, self.relevance_score(doc, query)) for doc in documents] scored.sort(key=lambda x: x[1], reverse=True) # Select up to limit selected = [] token_count = 0 for doc, score in scored: doc_tokens = self.count_tokens(doc.page_content) if token_count + doc_tokens <= self.max_tokens: selected.append(doc.page_content) token_count += doc_tokens return "\n---\n".join(selected)
2. Search Parallelization
DEVELOPERpythonasync def parallel_search(queries: List[str], retrievers: List[Retriever]) -> Dict: """Execute multiple searches in parallel.""" tasks = [] for query in queries: for retriever in retrievers: tasks.append(retriever.search(query)) results = await asyncio.gather(*tasks, return_exceptions=True) # Group and deduplicate results return deduplicate_results(results)
3. Intelligent Caching
DEVELOPERpythonclass AgentCache: """Intelligent cache for agent results.""" def __init__(self, ttl: int = 3600): self.cache = {} self.ttl = ttl def get_or_compute(self, key: str, compute_fn: Callable) -> Any: # Check cache if key in self.cache: entry = self.cache[key] if time.time() - entry["timestamp"] < self.ttl: return entry["value"] # Compute and cache result = compute_fn() self.cache[key] = { "value": result, "timestamp": time.time() } return result
4. Error Handling and Fallbacks
DEVELOPERpythonclass ResilientAgent: """Agent with robust error handling.""" async def execute_with_fallback(self, action: Action) -> Result: strategies = [ (action.primary_tool, action.params), (action.fallback_tool, action.params), (self.web_search, {"query": action.query}), (self.ask_user, {"question": f"I couldn't find: {action.query}"}) ] for tool, params in strategies: try: result = await asyncio.wait_for( tool.execute(params), timeout=30.0 ) if result.is_valid(): return result except Exception as e: self.log_error(e, tool, params) continue return Result.failure("All strategies failed")
Evaluating RAG Agents
Key Metrics
- Resolution rate: Percentage of queries resolved without human intervention
- Step count: Reasoning efficiency (fewer = better)
- Retrieval precision: Relevance of found documents
- Faithfulness: Responses based on sources vs hallucinations
- End-to-end latency: Total resolution time
Evaluation Framework
DEVELOPERpythonclass AgentEvaluator: """Evaluates RAG agent performance.""" def evaluate(self, agent: Agent, test_cases: List[TestCase]) -> EvaluationReport: metrics = { "resolution_rate": [], "steps_count": [], "retrieval_precision": [], "faithfulness": [], "latency": [] } for case in test_cases: start = time.time() result = agent.run(case.query) latency = time.time() - start metrics["latency"].append(latency) metrics["resolution_rate"].append( self.check_resolution(result, case.expected) ) metrics["faithfulness"].append( self.check_faithfulness(result, agent.last_sources) ) # ... other metrics return EvaluationReport( avg_resolution_rate=np.mean(metrics["resolution_rate"]), avg_latency=np.mean(metrics["latency"]), # ... )
Conclusion
Agentic RAG represents the natural evolution of RAG systems toward greater autonomy and intelligence. By combining planning, reasoning, and dynamic retrieval, these agents can solve complex tasks that exceed the capabilities of traditional RAG.
Key takeaways:
- Think agent, not pipeline: The agent dynamically decides its actions
- Modularity: Separate planning, execution, and evaluation
- Continuous validation: The agent must critique its own results
- Optimization: Parallelize, cache, and manage tokens
- Resilience: Plan for fallbacks and robust error handling
Agentic RAG paves the way for AI assistants truly capable of autonomous research, complex analysis, and multi-step reasoning. It's the foundation for future AI systems capable of working autonomously on sophisticated tasks.
Additional Resources
- Ailog Documentation - Comprehensive RAG guides
- LangChain Agents - Agent framework
- ReAct Paper - Original ReAct pattern
- Self-RAG Paper - Self-Reflective RAG
- CRAG Paper - Corrective RAG
Tags
Articles connexes
Introduction to Retrieval-Augmented Generation (RAG)
Understanding the fundamentals of RAG systems: what they are, why they matter, and how they combine retrieval and generation for better AI responses.
How to Build a RAG Chatbot: Complete Step-by-Step Tutorial
Learn how to build a production-ready RAG chatbot from scratch. This complete tutorial covers document processing, embeddings, vector storage, retrieval, and deployment.
Getting Started with RAG: Core Components
Learn how to build your first RAG system by understanding and assembling the essential components