Parent Document Retrieval: Context Without Noise
Search small chunks, retrieve full documents: the best of both precision and context for RAG systems.
- Author
- Ailog Research Team
- Published
- Reading time
- 9 min read
- Level
- intermediate
- RAG Pipeline Step
- Retrieval
The Problem
Small chunks: • ✅ Precise retrieval • ❌ Missing context
Large chunks: • ✅ Full context • ❌ Noisy retrieval
Solution: Search small, return large.
How It Works Index: Small chunks (200 tokens) Search: Find relevant small chunks Retrieve: Return parent document (2000 tokens)
Basic Implementation
``python import uuid
Store chunks with parent reference chunks = [] documents = []
for doc in raw_documents: parent_id = str(uuid.uuid4())
Store full document documents.append({ "id": parent_id, "content": doc, "embedding": embed(doc) })
Create small chunks for chunk in split_into_chunks(doc, size=200): chunks.append({ "id": str(uuid.uuid4()), "content": chunk, "embedding": embed(chunk), "parent_id": parent_id Link to parent })
Index chunks only vector_db.upsert(collection="chunks", documents=chunks) `
Retrieval
`python def parent_document_retrieval(query, k=5): Search small chunks chunk_results = vector_db.search( collection="chunks", query_vector=embed(query), limit=k )
Get parent document IDs parent_ids = [chunk["parent_id"] for chunk in chunk_results]
Fetch parent documents parent_docs = [ doc for doc in documents if doc["id"] in parent_ids ]
return parent_docs `
Langchain Implementation
`python from langchain.retrievers import ParentDocumentRetriever from langchain.storage import InMemoryStore from langchain.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter
Store for parent documents docstore = InMemoryStore()
Vector store for chunks vectorstore = Chroma(embedding_function=embeddings)
Splitters child_splitter = RecursiveCharacterTextSplitter(chunk_size=200) parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
Create retriever retriever = ParentDocumentRetriever( vectorstore=vectorstore, docstore=docstore, child_splitter=child_splitter, parent_splitter=parent_splitter )
Add documents retriever.add_documents(documents)
Retrieve (returns full parent docs) results = retriever.get_relevant_documents("machine learning") `
Multi-Level Hierarchy
`python Book → Chapter → Paragraph structure def create_hierarchy(book): book_id = str(uuid.uuid4())
for chapter in book.chapters: chapter_id = str(uuid.uuid4())
Index paragraphs (small) for paragraph in chapter.paragraphs: vector_db.upsert({ "id": str(uuid.uuid4()), "content": paragraph, "embedding": embed(paragraph), "parent_id": chapter_id, Chapter "grandparent_id": book_id Book })
Store chapter chapters[chapter_id] = chapter
Store book books[book_id] = book
def retrieve_with_context(query): Find relevant paragraphs paragraphs = vector_db.search(embed(query), limit=3)
Get surrounding context results = [] for p in paragraphs: chapter = chapters[p["parent_id"]] book = books[p["grandparent_id"]]
results.append({ "match": p["content"], "chapter": chapter, "book_title": book.title })
return results `
Windowed Retrieval
Return chunk + surrounding context:
`python def windowed_retrieval(query, window_size=2): Find relevant chunk chunk_results = vector_db.search(embed(query), limit=5)
Get chunks before and after expanded_results = [] for chunk in chunk_results: parent_doc = get_document(chunk["parent_id"]) chunk_index = find_chunk_index(parent_doc, chunk["content"])
Get window start = max(0, chunk_index - window_size) end = min(len(parent_doc.chunks), chunk_index + window_size + 1)
expanded_chunk = "".join(parent_doc.chunks[start:end]) expanded_results.append(expanded_chunk)
return expanded_results `
Qdrant Implementation
`python from qdrant_client import QdrantClient from qdrant_client.models import PointStruct
client = QdrantClient("localhost", port=6333)
Create collection with parent ID in payload client.create_collection( collection_name="chunks", vectors_config={"size": 1536, "distance": "Cosine"} )
Insert chunks with parent reference points = [] for i, chunk in enumerate(chunks): points.append(PointStruct( id=i, vector=chunk["embedding"], payload={ "content": chunk["content"], "parent_id": chunk["parent_id"] } ))
client.upsert(collection_name="chunks", points=points)
Retrieve def retrieve_parents(query): results = client.search( collection_name="chunks", query_vector=embed(query), limit=5 )
Get unique parent IDs parent_ids = list(set([r.payload["parent_id"] for r in results]))
Fetch parents from document store parents = [get_document(pid) for pid in parent_ids]
return parents ``
When to Use
✅ Use parent document retrieval when: • Documents have clear structure • You need full context for LLM • Precision is important
❌ Don't use when: • Documents are already small (< 500 tokens) • You want to minimize token usage • Context is not important
Parent document retrieval gives you precision without sacrificing context. Best of both worlds.