Hybrid Search for RAG: BM25 + Vector Search Tutorial (2025)
Boost RAG retrieval accuracy by 20-30% with hybrid search. Step-by-step tutorial combining BM25 keyword matching with vector search using Weaviate, Qdrant, or Pinecone.
- Author
- Ailog Research Team
- Published
- Reading time
- 10 min read
- Level
- intermediate
- RAG Pipeline Step
- Retrieval
Why Hybrid Search?
Vector search misses exact matches. BM25 misses semantics. Combine both for 20-30% better recall.
Vector search fails on: • Product IDs: "SKU-12345" • Proper nouns: "Marie Curie" • Technical terms: "RAG-Fusion"
BM25 fails on: • Synonyms: "car" vs "automobile" • Paraphrasing: "how to cook pasta" vs "pasta cooking instructions"
Implementation (November 2025)
With Weaviate
Weaviate has built-in hybrid search (alpha parameter):
``python import weaviate
client = weaviate.Client("http://localhost:8080")
results = client.query.get("Document", ["content"]).with_hybrid( query="Marie Curie radioactivity", alpha=0.7 0 = pure BM25, 1 = pure vector ).with_limit(10).do() `
With Qdrant
`python from qdrant_client import QdrantClient from qdrant_client.models import Prefetch, Query
client = QdrantClient("localhost", port=6333)
Vector + keyword search results = client.query_points( collection_name="documents", prefetch=Prefetch( query="radiation discovery", using="dense", limit=20 ), query=Query( text="Marie Curie", using="sparse" ), limit=10 ) `
Manual Hybrid (Any Vector DB)
`python from rank_bm25 import BM25Okapi import numpy as np
BM25 setup tokenized_docs = [doc.split() for doc in documents] bm25 = BM25Okapi(tokenized_docs)
def hybrid_search(query, vector_db, alpha=0.7, k=10): Vector search query_vector = embed_model.encode(query) vector_results = vector_db.search(query_vector, k=k2) BM25 search bm25_scores = bm25.get_scores(query.split()) Normalize scores to [0, 1] vector_scores = {r['id']: r['score'] for r in vector_results} max_v = max(vector_scores.values()) vector_scores = {k: v/max_v for k, v in vector_scores.items()} max_b = max(bm25_scores) bm25_scores_norm = {i: score/max_b for i, score in enumerate(bm25_scores)} Combine with alpha weighting combined = {} for doc_id in set(vector_scores.keys()) | set(bm25_scores_norm.keys()): combined[doc_id] = ( alpha vector_scores.get(doc_id, 0) + (1 - alpha) bm25_scores_norm.get(doc_id, 0) ) Sort and return top k top_results = sorted(combined.items(), key=lambda x: x[1], reverse=True)[:k] return [documents[doc_id] for doc_id, _ in top_results] `
Reciprocal Rank Fusion (RRF)
Better than score fusion - combines rankings, not scores:
`python def reciprocal_rank_fusion(rankings, k=60): """ rankings: List of document IDs ranked by different methods k: Constant (typically 60) """ rrf_scores = {} for rank_list in rankings: for rank, doc_id in enumerate(rank_list, start=1): if doc_id not in rrf_scores: rrf_scores[doc_id] = 0 rrf_scores[doc_id] += 1 / (k + rank) return sorted(rrf_scores.items(), key=lambda x: x[1], reverse=True)
Use it vector_results = vector_search(query) bm25_results = bm25_search(query)
final = reciprocal_rank_fusion([ [r['id'] for r in vector_results], [i for i, _ in sorted(enumerate(bm25_scores), key=lambda x: x[1], reverse=True)] ]) `
Tuning Alpha
Test on your queries:
`python test_queries = ["Marie Curie", "SKU-12345", "how does photosynthesis work"] ground_truth = {...} Known relevant docs
alphas = [0.3, 0.5, 0.7, 0.9] for alpha in alphas: recall = evaluate_hybrid(test_queries, ground_truth, alpha) print(f"Alpha {alpha}: Recall@10 = {recall}") `
Typical optimal values: • Technical docs with IDs/codes: alpha = 0.3-0.5 (favor BM25) • Natural language QA: alpha = 0.7-0.8 (favor vector) • Mixed content: alpha = 0.5-0.6
Sparse-Dense Encoders (2025 Innovation)
Single model for both sparse and dense:
`python from transformers import AutoModelForMaskedLM, AutoTokenizer
SPLADE or BGE-M3 for sparse+dense model = AutoModelForMaskedLM.from_pretrained('naver/splade-v3') tokenizer = AutoTokenizer.from_pretrained('naver/splade-v3')
Get both sparse and dense in one pass tokens = tokenizer(query, return_tensors='pt') output = model(*tokens)
sparse_vector = output.logits.max(dim=1).values Sparse dense_vector = output.last_hidden_state.mean(dim=1) Dense ``
Hybrid search is the secret weapon of production RAG systems. Implement it and watch your recall soar.