Parse PDF Documents with PyMuPDF
Master PDF parsing: extract text, images, tables, and metadata from PDFs using PyMuPDF and alternatives.
Why PDFs Are Challenging
PDFs are designed for display, not data extraction. Text can be:
- Images (scanned documents)
- Embedded fonts with custom encodings
- Complex layouts (multi-column, tables)
- Protected or encrypted
PyMuPDF: The Gold Standard (2025)
PyMuPDF (fitz) is the fastest and most reliable PDF parser.
DEVELOPERpythonimport fitz # PyMuPDF def extract_pdf_content(pdf_path): doc = fitz.open(pdf_path) full_text = "" metadata = { "title": doc.metadata.get("title", ""), "author": doc.metadata.get("author", ""), "pages": len(doc) } for page_num, page in enumerate(doc): # Extract text with layout preservation text = page.get_text("text") full_text += f"\n\n--- Page {page_num + 1} ---\n{text}" return full_text, metadata
Extract Images from PDFs
DEVELOPERpythondef extract_images(pdf_path): doc = fitz.open(pdf_path) images = [] for page_num, page in enumerate(doc): image_list = page.get_images() for img_index, img in enumerate(image_list): xref = img[0] base_image = doc.extract_image(xref) images.append({ "page": page_num + 1, "image_data": base_image["image"], "extension": base_image["ext"] }) return images
Handle Scanned PDFs (OCR)
For image-based PDFs, use Tesseract OCR:
DEVELOPERpythonfrom PIL import Image import pytesseract import fitz def ocr_pdf(pdf_path): doc = fitz.open(pdf_path) text = "" for page in doc: # Convert page to image pix = page.get_pixmap() img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # OCR the image page_text = pytesseract.image_to_string(img) text += page_text + "\n\n" return text
Extract Tables
Use pdfplumber for table extraction:
DEVELOPERpythonimport pdfplumber def extract_tables(pdf_path): tables = [] with pdfplumber.open(pdf_path) as pdf: for page in pdf.pages: page_tables = page.extract_tables() tables.extend(page_tables) return tables
Layout-Aware Extraction
Preserve document structure:
DEVELOPERpythondef extract_with_layout(pdf_path): doc = fitz.open(pdf_path) structured_content = [] for page in doc: blocks = page.get_text("dict")["blocks"] for block in blocks: if block["type"] == 0: # Text block text = "" for line in block["lines"]: for span in line["spans"]: text += span["text"] structured_content.append({ "type": "text", "content": text, "bbox": block["bbox"], # Position "page": page.number }) return structured_content
Performance Optimization
Parallel Processing for large PDFs:
DEVELOPERpythonfrom concurrent.futures import ThreadPoolExecutor def parse_pdf_parallel(pdf_path, num_workers=4): doc = fitz.open(pdf_path) def process_page(page_num): page = doc[page_num] return page.get_text() with ThreadPoolExecutor(max_workers=num_workers) as executor: texts = list(executor.map(process_page, range(len(doc)))) return "\n\n".join(texts)
Alternative Tools (2025)
- PyPDF2: Simple but slower
- pdfplumber: Excellent for tables
- Camelot: Specialized table extraction
- Adobe PDF Extract API: Commercial, very accurate
Best Practices
- Test with sample documents first
- Handle encrypted PDFs gracefully
- Preserve page numbers for citations
- Extract metadata (title, author, date)
- Use OCR only when needed (slower)
- Cache parsed results to avoid re-processing
PDFs are the backbone of enterprise knowledge. Master PDF parsing to unlock your RAG potential.
Tags
Related Guides
Document Parsing Fundamentals
Start your RAG journey: learn how to extract text, metadata, and structure from documents for semantic search.
OCR for Scanned Documents and Images
Extract text from scanned PDFs and images using Tesseract, AWS Textract, and modern OCR techniques.
Caching Strategies to Reduce RAG Latency and Cost
Cut costs by 80%: implement semantic caching, embedding caching, and response caching for production RAG.