Qdrant: Advanced Vector Search Features
Leverage Qdrant's powerful features: payload indexing, quantization, distributed deployment for high-performance RAG.
- Author
- Ailog Research Team
- Published
- Reading time
- 13 min read
- Level
- advanced
- RAG Pipeline Step
- Storage
Why Qdrant? • Open-source & self-hosted • Advanced filtering • Scalar quantization (4x smaller) • Distributed clustering • Built-in sparse vectors
Docker Setup
``bash docker run -p 6333:6333 qdrant/qdrant `
`python from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams
client = QdrantClient("localhost", port=6333)
Create collection client.create_collection( collection_name="documents", vectors_config=VectorParams( size=1536, distance=Distance.COSINE ) ) `
Payload Indexing
Index metadata for fast filtering:
`python Create index on "category" field client.create_payload_index( collection_name="documents", field_name="category", field_schema="keyword" )
Create index on numeric "price" client.create_payload_index( collection_name="documents", field_name="price", field_schema="integer" )
Now filtering is fast results = client.search( collection_name="documents", query_vector=embedding, query_filter=Filter( must=[ FieldCondition(key="category", match=MatchValue(value="tech")), FieldCondition(key="price", range=Range(lt=100)) ] ), limit=10 ) `
Quantization (4x Compression)
`python from qdrant_client.models import ScalarQuantization, ScalarType, QuantizationSearchParams
Enable quantization client.update_collection( collection_name="documents", quantization_config=ScalarQuantization( type=ScalarType.INT8, quantile=0.99, always_ram=True ) )
Search with quantization results = client.search( collection_name="documents", query_vector=embedding, search_params=QuantizationSearchParams( ignore=False, Use quantized vectors rescore=True Rescore with full precision ), limit=10 ) `
Result: 1GB index → 256MB (4x smaller, 10% accuracy loss)
Distributed Deployment
`yaml docker-compose.yml version: '3.8' services: qdrant-node1: image: qdrant/qdrant environment: • QDRANT__CLUSTER__ENABLED=true • QDRANT__CLUSTER__P2P__PORT=6335 ports: • "6333:6333" qdrant-node2: image: qdrant/qdrant environment: • QDRANT__CLUSTER__ENABLED=true • QDRANT__CLUSTER__P2P__PORT=6335 • QDRANT__CLUSTER__BOOTSTRAP__P2P__URI=qdrant-node1:6335 `
Sparse Vectors (Hybrid Search)
`python from qdrant_client.models import SparseVector, NamedVector
Upsert with both dense and sparse client.upsert( collection_name="hybrid", points=[{ "id": 1, "vector": { "dense": [0.1, 0.2, ...], Dense embedding "sparse": SparseVector( indices=[10, 45, 123], values=[0.5, 0.3, 0.2] ) }, "payload": {"text": "..."} }] )
Hybrid search results = client.query_points( collection_name="hybrid", prefetch=[ Prefetch(using="dense", query=[0.1, 0.2, ...], limit=100), Prefetch(using="sparse", query=SparseVector(...), limit=100) ], query=FusionQuery(fusion=Fusion.RRF), limit=10 ) ``
Qdrant combines power, flexibility, and performance. Perfect for advanced RAG use cases.