Fine-Tune Embeddings for Your Domain
Boost RAG retrieval accuracy by 30-50% with domain-specific fine-tuning. Learn to create custom embeddings for your documents and queries.
- Author
- Ailog Research Team
- Published
- Reading time
- 14 min read
- Level
- advanced
- RAG Pipeline Step
- Embedding
Why Fine-Tune?
Generic embeddings work well, but domain-specific fine-tuning gives 30-50% accuracy boost:
Before (generic): • Medical query: "MI treatment" → ❌ matches "Michigan"
After (fine-tuned): • Medical query: "MI treatment" → ✅ matches "Myocardial Infarction protocols"
When to Fine-Tune
✅ Fine-tune when: • Domain-specific jargon (legal, medical, technical) • 1000+ labeled query-document pairs • Base model underperforms (< 70% recall)
❌ Skip fine-tuning when: • General domain • < 500 training examples • Base model already works well
Training Data Format
``python Positive pairs (query → relevant document) train_data = [ { "query": "What causes diabetes?", "positive": "Type 2 diabetes is caused by insulin resistance...", "negative": "Diabetic retinopathy affects the eyes..." Optional }, { "query": "How to lower blood pressure?", "positive": "Lifestyle changes like diet and exercise reduce BP...", "negative": "High blood pressure symptoms include headaches..." } ] `
Method 1: Sentence Transformers
`python from sentence_transformers import SentenceTransformer, InputExample, losses from torch.utils.data import DataLoader
Load base model model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
Prepare training data train_examples = [ InputExample(texts=[item['query'], item['positive']]) for item in train_data ]
Create dataloader train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
Define loss (contrastive learning) train_loss = losses.MultipleNegativesRankingLoss(model)
Fine-tune model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=3, warmup_steps=100, output_path='./fine-tuned-model' ) `
Method 2: OpenAI Fine-Tuning
`python import openai
Prepare data in JSONL format with open('training_data.jsonl', 'w') as f: for item in train_data: f.write(json.dumps({ "input": item['query'], "output": item['positive'] }) + '\n')
Upload training file file = openai.File.create( file=open("training_data.jsonl", "rb"), purpose='fine-tune' )
Create fine-tuning job job = openai.FineTuningJob.create( training_file=file.id, model="text-embedding-3-small" )
Wait for completion status = openai.FineTuningJob.retrieve(job.id) print(status.status) 'succeeded'
Use fine-tuned model embeddings = openai.Embedding.create( input="your query", model=f"ft:{job.fine_tuned_model}" ) `
Method 3: Hard Negative Mining
Improve contrastive learning with hard negatives:
`python from sentence_transformers import losses
Generate hard negatives (similar but irrelevant documents) def mine_hard_negatives(query, candidates, model, k=5): query_emb = model.encode(query) cand_embs = model.encode(candidates)
Find most similar but incorrect documents scores = cosine_similarity([query_emb], cand_embs)[0] hard_neg_indices = np.argsort(scores)[-k:]
return [candidates[i] for i in hard_neg_indices]
Training with hard negatives train_examples = [] for item in train_data: hard_negs = mine_hard_negatives( item['query'], all_documents, base_model )
for neg in hard_negs: train_examples.append( InputExample(texts=[ item['query'], item['positive'], neg Hard negative ]) )
Use TripletLoss train_loss = losses.TripletLoss(model) `
Evaluation
`python from sklearn.metrics import ndcg_score
def evaluate_model(model, test_queries, test_docs, relevance_labels): predictions = []
for query in test_queries: query_emb = model.encode(query) doc_embs = model.encode(test_docs) scores = cosine_similarity([query_emb], doc_embs)[0] predictions.append(scores)
nDCG@10 ndcg = ndcg_score(relevance_labels, predictions, k=10)
return ndcg
Compare base vs fine-tuned base_model = SentenceTransformer('all-MiniLM-L6-v2') fine_tuned_model = SentenceTransformer('./fine-tuned-model')
print(f"Base model nDCG@10: {evaluate_model(base_model, ...)}") print(f"Fine-tuned nDCG@10: {evaluate_model(fine_tuned_model, ...)}") `
Incremental Fine-Tuning
Update model as new data arrives:
`python Load previously fine-tuned model model = SentenceTransformer('./fine-tuned-model')
Add new training data new_train_examples = [...]
Continue training (warm start) model.fit( train_objectives=[(new_dataloader, train_loss)], epochs=1, warmup_steps=50, output_path='./fine-tuned-model-v2' ) `
Distillation (Fast Inference)
Fine-tune large model, then distill to small one:
`python from sentence_transformers import models, SentenceTransformer, losses
Teacher: large fine-tuned model teacher = SentenceTransformer('fine-tuned-large-model')
Student: small base model student = SentenceTransformer('all-MiniLM-L6-v2')
Distillation loss train_loss = losses.MSELoss(student, teacher)
Train student to mimic teacher student.fit( train_objectives=[(train_dataloader, train_loss)], epochs=3 )
Now student is fast but performs like teacher ``
Fine-tuning embeddings is the secret weapon for domain-specific RAG. Invest in it early.