6. RerankingIntermediate
Cohere Rerank API for Production RAG
November 17, 2025
8 min read
Ailog Research Team
Boost RAG accuracy by 40% with Cohere's Rerank API: simple integration, multilingual support, production-ready.
Why Cohere Rerank?
- ✅ 40% accuracy improvement over bi-encoders
- ✅ 100+ languages supported
- ✅ Hosted API (no model hosting)
- ✅ Fast (< 200ms for 100 docs)
Quick Start
DEVELOPERpythonimport cohere co = cohere.Client('YOUR_API_KEY') def rerank_with_cohere(query, documents): results = co.rerank( model='rerank-english-v3.0', # or 'rerank-multilingual-v3.0' query=query, documents=documents, top_n=10 ) return [doc['text'] for doc in results.results] # Use it retrieved_docs = vector_search(query, k=100) reranked = rerank_with_cohere(query, retrieved_docs)
Models (November 2025)
rerank-english-v3.0
- English only
- $1 per 1000 searches
- Best accuracy
rerank-multilingual-v3.0
- 100+ languages
- $1 per 1000 searches
- Excellent for global apps
With Metadata
DEVELOPERpythonresults = co.rerank( query=query, documents=[ {"text": doc, "metadata": {"source": "wiki", "date": "2025"}} for doc in documents ], top_n=10, return_documents=True ) for r in results.results: print(f"Score: {r.relevance_score}") print(f"Text: {r.document['text']}") print(f"Metadata: {r.document['metadata']}")
Cost Optimization
DEVELOPERpython# Only rerank if initial score is low def smart_rerank(query, initial_results, threshold=0.7): # If top result has high confidence, skip reranking if initial_results[0]['score'] > threshold: return initial_results[:10] # Otherwise, rerank return rerank_with_cohere(query, [r['text'] for r in initial_results])
Cohere Rerank is the easiest way to dramatically improve RAG accuracy. Just plug it in after retrieval.
Tags
coherererankapiproduction
Related Guides
guidesadvanced
Reranking: Improving Retrieval Precision
Cross-encoders, LLM-based reranking, and reranking strategies to optimize retrieved context for better RAG responses.
11 min read
guidesadvanced
Cross-Encoder Reranking for RAG Precision
Achieve 95%+ precision: use cross-encoders to rerank retrieved documents and eliminate false positives.
11 min read
guidesintermediate
Pinecone for Production RAG at Scale
Deploy production-ready vector search: Pinecone setup, indexing strategies, and scaling to billions of vectors.
12 min read